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The nonlinear interaction between an incident and a reflected Rossby wave produces 
a steady flow parallel to the (non-zonal) reflecting wall and a transient flow oscillating 
at twice the frequency of the incident-reflected pair. If the transient forcing is resonant, 
i.e. a free Rossby wave, the resonant response must have zero amplitude at the wall in 
order to fulfil the boundary condition there ; a straightforward expansion predicts a 
linear growth of its amplitude in the offshore direction y. Resonance is possible only 
if 0 < lsinal < i, where a is the angle between the wall and the easterly direction. This 
requirement is met by several boundaries in the ocean. A simple graphical method to 
find a resonant triad is described. 

Using the method of multiple scales, it is shown that the wave amplitudes of the triad 
are slowly varying periodic functions of y ,  such that the energy flux of the triad through 
any plane parallel to the wall vanishes, as required by energy conservation. The waves 
participating in the resonant triad become wave packets. The three waves do not 
exchange energy in time due to the additional constraint on the motion imposed by the 
boundary condition at the wall. It is shown that the wave amplitudes cannot be slowly 
varying functions of y and time. 

As a possible oceanic application of the theoretical findings, the distance from the 
wall where one would expect to find large semi-annual amplitudes if annual Rossby 
waves are impinging on the boundary is of the order of 100 km. Motivated by similar 
studies (Plumb 1977; Mysak 1978), there are speculations on what would happen if 
three incident-reflected Rossby wave pairs (or modes) are taken, allowing each mode 
amplitude to be slowly varying in time. 

1. Introduction 
The weak nonlinear interaction between an incident and a reflected baroclinic 

Rossby wave leads to (Graef-Ziehl 1990 hereinafter referred to as GZ): (i) an Eulerian 
steady flow parallel to the (non-zonal) reflecting wall and (ii) a transient flow oscillating 
at twice the frequency (2w)  of the Rossby wave pair. The main interest in GZ was to 
study the Eulerian mean flow that is driven by the waves (a first-order effect), the 
influence that the steady flow had on the driving Rossby waves themselves (a second- 
order effect) and the steady flow occurring at third order driven in part by the modified 
Rossby waves. It was shown in GZ that the transient forcing could be resonant if 
0 < lsina( < f, where a is the angle between the reflecting wall and the easterly 
direction. The goal of this paper is to answer the following question : what happens if 
the nonlinear interaction of an incident and a reflected baroclinic Rossby wave excites 
a free Rossby wave? Specifically: (i) Given the possibility of having the incident, 
reflected and forced waves forming a resonant triad, how to find such waves? (ii) Is 
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there a particular solution that grows linearly in time being consistent with the 
constraints on the motion? (iii) It is possible to find a uniformly valid solution in the 
resonant case? 

In the weak nonlinear interaction regime, there is great interest in studying resonant 
interactions, for all non-resonant interactions only produce a small-amplitude 
background noise of forced waves whose amplitudes are small compared to those 
waves produced by the resonant interactions (Pedlosky 1987). 

The theory of resonant interactions among Rossby waves has a long history. 
Longuet-Higgins & Gill (1967) studied resonant interactions of barotropic, divergent 
(free surface) Rossby waves in a laterally unbounded ocean. If the Rossby waves are 
baroclinic, account must be taken of the nonlinear coupling between vertical normal 
modes. As regards boundary effects, Plumb (1977) considered resonant interactions of 
barotropic Rossby waves in a zonal channel to study their stability. Mysak (1978) 
studied resonant interactions of topographic Rossby waves in a continuously stratified 
channel of arbitrary orientation; however, his scaling is such that the leading order 
balance is the linear quasi-geostrophic potential vorticity equation (QGPVE) without 
the /I-term. 

To the author’s knowledge, resonant interactions of baroclinic planetary waves in an 
ocean with a single lateral boundary have not been studied. 

An important difference between this work and the papers of Plumb (1977) and 
Mysak (1978) is that both authors took a triad of wave modes (solutions to the linear 
problem), whereas here the resonant triad is an incident, a reflected and the 2w Rossby 
wave. For instance, in Plumb (1977) a wave mode is in fact a superposition of two 
Rossby waves (an incident-reflected pair) with the cross-channel wavenumbers 
discretized. Of course, one reason why Plumb considered more than one wave mode 
is that one wave mode is an exact nonlinear solution (this is not true for a non-zonal 
wall). In both papers each wave mode amplitude was slowly varying in time, thereby 
implying an energy exchange among the members of the resonant triad. It will be 
shown that the incident, reflected and 2w Rossby waves do not exchange energy due 
to the constraint on the motion imposed by the boundary condition at the wall, even 
though the resonant conditions are satisfied. 

The plan of this paper is as follows. In $2 a brief background to the theory that 
motivated this study is presented. A general discussion about the resonantly interacting 
triad is given in $3, i.e. describing a graphical method to find a resonant triad, together 
with a particular solution that grows linearly with distance from the wall. In $4 the 
technique of multiple scales is used to obtain a uniform perturbation expansion. The 
physical meaning behind the wave amplitude equations of the resonant triad and the 
integral constraints derived from them is shown via energy considerations in $ 5 .  
Finally, $6 is devoted to discussion and conclusions. 

2. Theoretical background 
The coordinate system has x parallel and y perpendicular to the wall, and z vertically 

upwards. The governing equation is the QGPVE, and the boundary conditions are no 
normal flow at the boundaries (reflecting wall, flat bottom and rigid lid) and the 
solution must be bounded at infinity. A perturbative solution for the (non-dimensional) 
quasi-geostrophic streamfunction is sought in the form 

(2.1) 

where E = U/@L*) is the /I-Rossby number in which /I is the northward gradient of the 

+b = +b(O) + €+b(1’ + €2+b(2) + . . . , 
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planetary vorticity and L and U are horizontal length and horizontal velocity scales. 
respectively. 

If the leading-order solution is the superposition of an incident and a reflected 
Rossby wave, i.e. if 

(2.2) 

where A is the wave amplitude, Y,(z) is an eigenfunction of the vertical Sturm-Liouville 
problem with corresponding eigenvalue A,, Oio) = kx + It  y -  wt + 4, i = 1,2 and 

p o )  = A Y , ( ~ )  (cos oy) - cos ey) ,  

- (k cos a + I ,  sin a) 
w = a&, /J = , i =  l ,2,  

k2 + + L2g A, 

then the first-order [O(s)] perturbation equations are 

= - B,, y",(z) [cos (BY)  - ep) - cos (el") + ep))], (2.4) 

where S(z) = H 2 N 2 ( z ) / g  L2 is the stratification parameter (Pedlosky 1987), f, the 
Coriolis parameter, H the water depth, N(z)  the Brunt-Vaisala frequency, 
B,, = ;A2k(I, - I*) (c - c), 

a, $(I)  = 0 at y = 0, (2.5) 

(2.6) 

and +(') bounded as x -+ f 00, y + 00. (2.7) 

a, az $(I) = - J ( $ ( O ) ,  a, f0)) = 0 at z = - 1, 0 

Henceforth it will be assumed that B,, + 0. For A =k 0 this is equivalent to assuming 

The solution for $(l) is written as $(l) = $k:,,,+$Fj+$:i, where 
that k =# 0 and II,( =# II,l (i.e. sina + 0 or non-zonal walls). 

(2.8) 

is the steady forced solution that gives an Eulerian steady flow parallel to the (non- 
zonal) wall, first described in Mysak & Magaard (1983) for their special case of no 
friction, 

bm = -B12 YC yrn dz/(2w) -B12 5nnm/(2w) 

(2.10) 

Solution (2.9) is valid when A is not one of the eigenvalues L2Ehrn, which is a 

In order to have resonance, it is necessary that: 
(i) A be an eigenvalue, say A = L2gAM, because then, and only then, 2w = a,(2k, 

(ii) the projection of the forcing function P,(z) on the Mth mode eigenfunction be 

1, in which 

and 

and $rim is a homogeneous solution of (2.4), which is chosen to satisfy (2.5). 

sufficient condition for not having resonance. 

A = - {(2k)2 + ( I ,  + I,), + ( 1  /2w) [2k cos a + (I, + I,) sin a]}, 

I, + I , ) ,  and 

non-zero, i.e. =!= 0. 
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Furthermore, it is necessary that lsinal < f to have a solution of the resonance 
conditions with k real (GZ; shown below). 

The issue of this paper is to study what happens when there is resonance, i.e. when 
all the conditions above are met and an acceptable solution to the resonance conditions 
is found. 

3. Solution of the resonance conditions 
To satisfy the resonance conditions there are three equations, namely, w = a&, fJ, 

i = 1,2 and 20 = aM(2k, 1, + f,), and six unknowns: k, I , ,  l,, (0, n and M .  
The dispersion relations w = a,(k, li), i = 1,2 imply I, + f2 = -sin a / w ;  if this is 

substituted into 2w = ( T M ( 2 k ,  f, + I , )  one arrives at an equation F(k ,  o, M )  = 0. Solving 
for k, one gets 

The condition lsin a1 < 5 is obvious. Thus, if the resonance conditions are satisfied then 
k = k(fes); however, the converse is not always true : for that, k y )  should also be in the 
interval (k,, k,) ,  where 

(3.2) 

to assure that f,, , are real and different. If k = k y )  (either) and k(:es) - E (k,, k , )  then, and 
only then, are the resonance conditions satisfied. 

In the theory of the North Hawaiian Ridge Current by Mysak & Magaard (1983), 
the authors used a = 25" as an average value for the Hawaiian Ridge; this theory 
would then suggest that resonant interactions (at first order) would be absent owing 
to the orientation of the ridge. 

Note that (3.1) is independent of the mode number n. It would appear as though the 
number of degrees of freedom were two. However, if a single equation in terms of k 
and 1, (of fourth degree in k and 11) is obtained, A,  and A M  appear in it. 

Since the (non-dimensional) wave period T of the incident-reflected pair must satisfy 
T > T,, = 4xL f,A\ to have I , ,  real, but also 

in order for Icyes) to be real, it follows that T 2 max(T,,, Tmin,,,). Figure 1 shows 
Tmin, as a function of 101) for M = 0 and for the first five baroclinic modes. The cutoff 
periods were computed using the eigenvalues obtained from the stratification at 
weather station November (140" W, 30" N) (Emery & Magaard 1976). 

Therefore, for given w and M (and a such that lsin a1 < )), there are at most two triads 
of Rossby waves that can interact resonantly, the triad being formed by the incoming, 
reflected and forced wave. Figure 2 shows the wavelengths of the triad as a function 
of the period T for the barotropic and the first mode baroclinic (n = M = 1) case. For 
annual period incident waves there is a reasonable range of 100 to 900 km in the 
wavelengths of the triad. Barotropic Rossby waves of periods about 1 month, as 
suggested by recent altimeter data, would have wavelengths of order 1000 km. 

To understand why there should be any constraint on the orientation of the wall to 
have a resonantly interacting triad, consider the following. Assume that for the given 



First-order resonance in the rejection of baroclinic Rossby waves 519 

10 

8 

6 

4 

2 

I I 
01 2 4 6 8 10 12 14 16 18 20 

Angle between wall and easterly direction (deg.) 
FIGURE 1 .  The minimum period T,,,,,. = Tmln,,,/(jU,) (in years) versus la1 (in degrees) to have 
resonance. Each curve is labelled according to the mode number M of the ‘forced’ wave. (Reference 
latitude 8, = 2 5 O . )  

M and w the (M,2w)  circle can be drawn, i.e. A h  = 1/(16w2)-L2EAM > 0. The y- 
component (7) of all the wave vectors lying on this circle must satisfy 

17 +sina/(h)l  < A,. 

For resonance to occur, the wave vector with offshore component 

7 = l , + I , ( =  -sina/w) 

must be on the (M,2w)  circle, therefore 13 sinal(4w)l < A,, which is precisely the 
condition to have k:es) real. 

The following procedure describes a graphical method (see figure 3) to find a 
resonantly interacting triad : 

(i) Draw the (n,w) circle where the wavenumbers of the incident-reflected wave 
pairs must lie. 

(ii) Draw the straight line parallel to the k-axis (parallel to the wall) given by the 
equation 1 = -sin a / w .  Note that all possible pairs of incident-reflected Rossby waves 
of the same frequency (for the given a) share the same ll + 1 2 ,  thus this sum is an 
invariant from pair to pair. 

(iii) Pick a mode number M and compute A h .  If A h  > 0 then draw the (My 2w)  
circle of radius A, and centred at (-cos a / 4 w ,  -sin a /4w) .  If this circle intersects the 
line 1 = -sina/w, then the points of intersection (at most two) have coordinates 
[ 2 k y ) ,  I ,  + l,] ; otherwise, there are no resonant triads. If A h  < 0 then there are no Mth 
mode Rossby waves of frequency 2w that can interact resonantly with the nth mode 
incident-reflected waves of the given frequency w.  Choose a smaller M. 

(iv) The points of intersection of the straight lines k = k:es) with the (n,  w )  circle are 
the tips of the incident and reflected wavenumber vectors. It could happen that neither 
of the two lines k = kp) intersects the (n,  w )  circle; in these cases there are no resonant 
triads with 11,2 real. Only in the barotropic (n  = 0) rigid lid (A, = 0) case is it always 
true that k p )  E (k2, k,). 
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FIGURE 2. The wavelengths (km) of the resonant triad (i = incident, r = reflected and f = forced) 
versus period (years) of the incident-reflected Rossby wave pair for Oo = 25", la1 = 10". (a) 
n = O * M = O ; ( b ) n =  I a n d M =  1 .  

3.1. A particular solution 
When there is resonant forcing, solution (2.9) needs to be modified for m = M. The 
solution for the Mth mode amplitude when h = LEE A, and SnnM + 0 is given by (GZ) 

The denominator in (3.4) is h ( l ,  + 12) + sin a = - 3 sin a =+ 0 for non-zonal walls. 
Solution (3.4) grows linearly away from the boundary. There is a linearly growing 
solution in y to the zeroth-order problem when the two roots 11, , coalesce (GZ); thus, 
this is the solution that gets excited when there is resonant forcing. 
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FIGURE 3. Graphical method to find a resonantly interacting triad for given n and w of incident wave. 
(a) The (n,w) circle with n = 1 ,  T = 1 year; a = 15", 8, = 25'. (b) The straight h e  I = -s ina/o 
(parallel to wall). (c) The ( M ,  2w) circle, M = 0 and its intersections with I = -sina/w at (2k';e6', 
I, + 12). ( d )  The wavenumber vectors of a wave triad (i = incident, r = reflected and f = forced). 

Therefore, solution (2.9) is replaced by 

The amplitude of oscillation of the particular solution in the case of resonant forcing 
is unbounded as y + a. 

There is no solution that grows linearly in time. Indeed, one can show that although 

is a solution for the Mth mode amplitude, one cannot satisfy the boundary condition 
at the wall (2.5). This just reflects the fact that the problem under consideration is a 
boundary value problem periodic in time, inhomogeneous in space (in y )  and not an 
initial value problem. The y-coordinate in this problem plays the role of time in 
resonant interaction problems that are homogeneous in space (e.g. Pedlosky 1987). 

Furthermore, a solution of the form G( y, t )  cos (8:") +Or)) with G(0, t) = 0 does not 
exist, unless G is only a function of y. This means that the amplitudes of the resonant 
triad cannot be expected to be slow functions of y and t. 

18 FLM 2.51 
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The first-order perturbative solution $ = $(") + E$( ' )  is clearly not valid for large y.  
In the next section the method of multiple scales will be applied to obtain a uniformly 
valid solution in y to O(e). 

Finally, it is interesting to note that the forced wave, - cos (Oio) +Of)), is a reflected 
(incident) wave for a western (eastern) boundary. This result is in agreement with the 
idea of westward intensification: that a western (eastern) boundary acts as a source 
(sink) of small-scale motions. In the unbounded case, the energy flux of the forced wave 
(and of those that produced it) is irrelevant. But here one must be prepared to accept 
and try to understand physically how one can have, say for a western boundary, two 
reflected Rossby waves and one incident Rossby wave, as will become clear shortly. 

4. Multiple-scale analysis 
The method of multiple scales is described in Bender & Orszag (1978) and Nayfeh 

(198 1). The straightforward, pedestrian expansion indicates that very near the coast the 
amplitude of the forced wave is linear in ey and suggests that the amplitudes of the triad 
be functions of 

a longer space scale because & is not negligible when y is of order e-l or larger. 
The y-derivatives in the QGPVE are transformed according to a, + a, + E &,, + . . . 

and a,, -+ ?I,, + 2e ayy,  + . . . . Using these transformations, the QGPVE to O(E) becomes 

r, = Ey, (4.1) 

where V2 = a,a,+C7, a, and J(A,  B) = a, A ay B-a ,  Ba, A .  The boundary conditions 
are the same as before for the first-order problem because, except for the Jacobian in 
the boundary conditions in z, they do not involve y-derivatives. 

Following Pedlosky (1987), the leading-order solution is written now as a 
superposition of three wane packers participating in the resonant wave triad, namely 

$(O) = A,( &, . . .) U',(Z) cos O y  - A,( K, . . .) !Pfl(z) cos Op) + A3( &, . . .) YM(z)  cos Or), 
(4.3) 

where now O y )  = kx + Ii y -  or + $i( $, . . .), i = 1,2 and Oko) = O y  + O F ) ,  tnnM + 0, 
and the resonant conditions are satisfied, i.e. h = L 2 x h M ,  or, equivalently 2w = 

The zeroth-order QGPVE does not have Y,-derivatives so it is satisfied by (4.3); the 
amplitudes and phases act as constants in the leading-order perturbation equations. 
However, in order for (4.3) to satisfy the boundary condition at the wall it is necessary 
to impose conditions on the amplitudes and phases. At & = 0, i.e. at y = 0: 

a,(2k, I ,  + 1,). 

A ,  = A ,  = A ,  

A ,  = 0. 
I (4.4) 

As is usual in multiple-scale analysis, the functional dependence on r, of the 
amplitudes and phases is unknown at the leading order. It will be determined at O(e) 
by eliminating secular terms. 
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To find a solution to (4.2) $(l) is expanded in terms of the complete set of 

(4.5) 

where @:) = J:, $(')Ym(z) dz. The equation governing @:) is obtained by multiplying 
(4.2) by Y,, integrating over the depth and using (2.6); the result is 

eigenfunctions { Ym(z)} : 
00 

$(l) = c @E)(X, y ,  t )  Ym(z), 
m-0 

at(v2 - L2fi A,) @E) + cos a a, @:) + sin a a, @:) 

= - q2 E,,, [COS (el") - ep) - cos e p ]  - a,, E~~~ [COS e y  - cos (2ep + ep)] 
- a2, EnMm [cos or) - cos ( e y  + 2 8 3 1  

- (201, + sin a) Snm(ay ,  A, cos Or) - A ,  ayl  $, sin 8:")) 

+ (2d2 + sin a) dnm(ay ,  A ,  cos O r )  - A ,  a,, $2 sin Or))  

- [4~( l ,  + 12) + sin a)] a,, [a,, A, cos f?io) - A ,  a,,($, + $2) sin ep], (4.6) 

where 

g,, = -;A, A ,  k(12 - 1,) [(2k)2 + (I, + 12)2 + L2X A, - (k2 + + L2X A,)], 

9912 = i - 4 1 4  Ml, - 4) ( I :  - E), 

a2, = ~ A 2 A , k ( l , - l 2 ) [ ( 2 k ) ~ + ( l l + l 2 ) ~ + L 2 ~ A ~ - ( ~ 2 + ~ + L 2 f i A n ) ] .  
(4.7) I 

Regarding (4.6), the following remarks should be made: (i) The terms proportional 
to sin el") and cos OF) ,  i = 1,2 will be secular (i.e. homogeneous solutions of (4.6)) if 
rn = n because they are nth mode Rossby waves. If rn + n the terms - S,, disappear but 
those remaining, - E n M m ,  i = 1,2, are not secular. (ii) If rn = M then, and only then, 
the terms - sin Of), - cos Of) are secular, since they are Mth mode Rossby waves. (iii) 
In summary, the terms with a Kronecker's delta factor survive only when m = n or 
rn = M, which is precisely when they are needed to eliminate the secular terms. 

From the equation for rn = n, the removal of secular terms from the right-hand side 
of (4.6) requires 

- ( 2 ~ 4  + sin a) a,, A, - a., En,, = 0, (4.8) 

(2wI2+sina)aYl A 2 - 4 3 t ; n M n  = 0, (4.9) 

a,, $1 = a,, $2 = 0, (4.10) 

and from the equation for rn = M (which would be the same as that for rn = n if 
n = M )  

- [4w(l1 +I2) + sin a)] a,, A, + B12 EnnM = 0. (4.1 1) 

The remaining equation is d,,($, +$J = 0, which is automatically satisfied by (4.10), 
whose solution (using (4.4)) is $, = $2 = $ = constant as far as the dependence on 
is concerned. Thus, resonant interactions at O(E) do not change the phase of the waves, 
but only their amplitudes. 

Using the dispersion relations it follows that 

sin a 
[(21k)~ + (I, + 12)2 + L2fi A, - (k2 + + L2fi A,)] = ( - 1)* (4 - 11), i = 1,2, 

(4.12) 

implying that the total wavenumber of the forced wave is always between the total 
wavenumbers of the incident and reflected waves. The third wave must have 

18-2 
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intermediate westward slowness in order to have maximum frequency (Ripa 198 1). 
Only in the n = M case is the wavelength of the forced wave always between the 
wavelengths of the incident and reflected waves (see figure 2). 

Noting that 201, + sin a = (- 1)i w(1, - l,), i = 1,2 and using (4.12), the amplitude 
equations can be rewritten as 

a,, A ,  - y  A ,  A ,  = 0, (4.13) 

d y , A , + y A , A ,  = 0, (4.14) 

(4.15) 

(4.16) 
sin a 
2w2 

where y = 3 - (1, - 12)  S n n M .  

The system of first-order nonlinear ODES just obtained is typical of three-wave 
resonance problems and it has been extensively studied (see Ripa 1981 ; Craik 1985). 
Exact solutions of (4.13)-(4.15) are known in terms of elliptic functions. When the 
three constants multiplying the products A, A, have different signs (as here), these 
solutions are mostly periodic, but there are non-periodic limiting cases. The amplitudes 
remain bounded whenever the signs of the constants differ. 

Generally, the amplitudes depend on time, and in some instances on time and 
spatial, variables (Newell 1969; Plumb 1977; Craik 1985). However, for this problem, 
the wave amplitudes cannot be functions only of a slow time variable T = ~t simply 
because there is no way that the superposition of the incident, reflected and forced wave 
(but now a free Rossby wave) satisfy the boundary condition at the wall. And, as 
mentioned in $3.1, neither can the amplitudes be functions of Y, and if A,(O, T) = 
0 is required. 

The group velocity of a Rossby wave Q = a#) can be written as 

wk + ifE 
c, = -2- 

K 2  ' 
(4.17) 

where f, = icos a +jsin a is the unit vector in the eastward direction, i and ja re  the unit 
vectors in the x- and y-directions, respectively, and K 2  = lk12 + L2f;: A,. In dimensional 
units c,, = -2w,[k, +piE/(2w,)]/K:. It follows that the y-component of c, for each 
wave of the triad is cRyi = (- I), w(1, - I,)/K;,  i = 1,2 and cgY3 = 3 sin a/K,2. Thus, if 
I, (I,) is the root of (2.3) with the positive (negative) radical, I, (I,) corresponds to the 
incident (reflected) wave for all boundary orientations. The expression for c,,, confirms 
that the wave A, is a reflected (incident) wave for a western (eastern) boundary. 

There are two functionally independent first integrals of system (4.13)-(4.19, which 
permits one to reduce its solution to a problem of quadratures and the system is 
completely integrable (Bessis & Chafee 1986). Multiplying A,  by (4.13), A, by (4.14) 
and adding the resulting equations yields a, , (A:+A:)  = 0, or A : + A i  = 2A2, having 
used the boundary conditions (4.4). Analogously, from (4.14) and (4.15) one gets 
2w(l, -1,) A: + 3 sin a A :  = 241, - f2) A'. Combining these two last equations, which are 
functionally independent first integrals of (4.13H4.15), one obtains 

(4.18) 

which means that the sum of the average energy fluxes (or total flux) normal to the wall 
is a constant equal to zero, as required by energy conservation (shown below in $ 5 ) .  

The numerical solution of the wave amplitudes for different wall orientations and for 
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FIGURE 4. The wave amplitudes of a resonant triad as a function of = ey .  Dotted line: A ,  or 
incident Rossby wave; dashed line: A ,  or reflected Rossby wave; solid line: A ,  or 'forced' Rossby 
wave. The corresponding wavelengths are indicated on each curve. Reference latitude B,, = 25". 
CY = lo", T =  1 year. (a) n =  M = O ;  (b)  n = I ,  M =  1.  

barotropic (n  = 0) and first baroclinic mode (n = 1) annual incident-reflected Rossby 
wave pairs is shown in figures 4 and 5.  For the case shown in figure 4(b), where all 
waves are first-mode baroclinic, the value t,,, = 1.78 was used (taken from Flier1 
1978); note that t,,, = 0 when N ( z )  is constant. Clearly, the amplitudes or envelopes 
of the wave packets are periodic in &. The q-axis can be dimensionalized using 

For western (eastern) boundaries the envelope of the incident (reflected) wave packet 
A, (A,) is nowhere zero. This can be checked directly from (4.18). The other two 
envelopes of reflected (incident) wave packets oscillate around zero out of phase and 
at the same frequency, the amplitude of A, always being the greatest of the three. A, 

y ,  = L&/E. 
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FIGURE 5. As in figure 4, except that a = 19", close to the threshold angle sin-' (i) = 19.47" and 
(h) n = 1, M = 0. 

starts with zero at = 0 and grows approximately linearly near the coast, as indicated 
by the pedestrian expansion solution (3.4); it then reaches its maximum at that point 
where the reflected (incident) wave amplitude is zero. 

It would be of interest for oceanographic applications to know at what distance from 
the boundary one would expect to find large semi-annual period amplitudes if annual 
Rossby waves are impinging on the boundary. This distance (d*), taken as the distance 
from the boundary at which [As [  attains the first maximum, has been calculated as a 
function of the maximum horizontal particle speed (at y = z = 0) of the incident 
Rossby wave, U,, for the four cases shown in figures 4 and 5 (to compute E, a 
dimensional wave amplitude is needed, which has been calculated from Ui) .  It may be 
shown that d* is inversely proportional to U,. For Ui = O(1 cm/s) (see e.g. figure 11 
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of Kang & Magaard 1980) it is d ,  = O(100 km), except for figure 4(a), where the 
incident barotropic Rossby wave has a wavelength of 884 km and d ,  = O(lOO0 km). 

Recall that the signal produced by the resonant interaction between an incident and 
a reflected Rossby wave has the structure A,( &) ul,(z) cos (k,. x- 2wt + 2@), where 
A,(y,)  is periodic in y,, A3(y,+4d,) = A,(y,) .  The values of d,  quoted in the last 
paragraph are similar to the wavelength A, = 2x/lk,,l. For example, in the case of 
figure 4(b), d,  = 300 km for U, = 1 cm/s and the A, wave of period half a year has a 
wavelength of 251 km. Therefore, the condition for weak nonlinearity, 4d, % A,, is 
only marginally satisfied for U, = O( 1 cm/s) of annual incident Rossby waves. 

The steady flow of O(E) is given by (2.8) but with B,, replaced by B12(ey), i.e. there 
is an amplitude modulation in the steady flow. Thus, in case of resonance, the Eulerian 
steady current parallel to the wall of Mysak & Magaard (1983) in the absence of 
friction gets modified. 

5. Energetics 
In GZ the energy E and energy flux 9, expressions for which are given in the 

Appendix, have been calculated for $(O) given by (2.2). It is shown that the total energy 
inside the volume V, defined by the parallelepiped -n/lkl < x < n/Jkl, 0 < y < yB, 
- 1 < z < 0, remains constant in time for all y ,  > 0. Then, it must be true that 
JJ, 9'- i i ,  dA = 0, where A is the area enclosing V and ii, is the outward unit normal 
to A. Because $(O) is periodic in x the contributions of .4", (the x-component of 9') at 
the planes x = -n/lkl, n/lkl will cancel out. At the top and bottom vanishes; at the 
wall y = 0, SP, = 0. Thus, So (%)Zdz = 0, where the x-integral is indicated by ( )". 

In general the enstrophiis not conserved for bounded domains (Pedlosky 1987). 
However, it is interesting to note that for the linear solution of the reflection problem. 
i.e. for $(O) given by (2.2), the total enstrophy inside V remains constant in time. Thus. 
although a Rossby wave packet reflected from a rigid boundary changes its total 
wavenumber thereby changing its enstrophy, the total enstrophy inside V is a constant 
in time. 

Now there are three waves (see (4.3)) with their amplitudes varying slowly in y.  
Without going into any calculation one can deduce that at JJJ, Ed  V = 0 (there will be 
extra terms in the expression for E given by (A 4) due to the amplitude modulation, but 
when integrated, the time dependence drops out). The arguments above still apply for 
9, and x, since e.g. $(O) given by (4.3) is periodic in x. What about the energy flux 
through the plane parallel to the wall y = y, of area -n/lkl < x < n/lkl, - 1 < z < O? 

To leading order in E ,  the x-average? of YV is (adapted from (A 7)) 

<%)x = (%JZ + <%JZ + ( .4pV>z 
= - Pa(l, - I,) w ( A  - A i) + VnM sin aA;. (5.1) 

Note that the cross-terms ,., A, A,, i = 1,2 vanish when x-averaged. Therefore, the 
integral constraint (4.18) and 

n, 
J (SP,)"dz=OVy 

-1 

are equivalent1 statements that the leading-order total energy flux through an (x, z)- 
plane is zero, as required by energy conservation in the volume V. 

t An x-average if the x-domain is ( -  00, co); if integration is over a period of length 2n/lkl, one 
multiplies the period by the x-avera+e to get the tot$l flux. 

1 This follows from the relation I_, (9')*dz = cgJ-, (E)*dz = c, K2A2/4 for a baroclinic Rossby 
wave. 
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To the next order, i.e. to O(c), there will be additional terms in Y besides those 
appearing in (A 6), due to the slowly varying wave amplitudes. All these terms are (Oc) 
and will be distinguished by their ?-derivatives. For example, the y-component of the 
energy flux of the ith wave is now 

qv = - At(wi lt + t sin a) P,* cos2 0;') - eA;(lkil2 + L2fi A,) ki P, 
x sin 0:') cos' 0;") - €Ai a y ,  Ai P,( wt cos 0;') sin elo), i = 1,2,3. (5.3) 

When Zv is x-averaged, the O(e) terms vanish; the new terms - ayl A, do not 
contribute to (xu)'. Using (A 6) and taking into account the new terms, one obtains, 
to O(e), the x-average of Yv: 

C q x  = (%y>x + (QX + (%y>x 
+ c$J P,[A, a y, A ,  sin (0:) - 0:")) + A ,  a y ,  A sin (0:") -091  

-€:A,  A ,  Y, YJR x k,(lk,I2 + ~ , f i  A,  + lk,12 + L X  A,) A, Y, 
x sin (0;') - 0:")) + L x k , ( l k , ~ ~  + ~ ' f i  A,) A, Y, sin (oL") - ey)) ] . j  
-"A,A, Y, YM[R x k , ( ~ k , 1 2 + L ~ h n + ( k , ~ ~ + L ~ ~ h , ) A ,  Yn 
x sin (0:") - s ~ O ) )  + L x k,(lk,12 + ~ , f i  A,) A, Y, sin ( o ; O )  - 0:O))l a j .  (5.4) 

The vector k, has components (2k, I, + 1,). Among the terms that vanish when Yv is 
x-averaged are those proportional to Ai a Y ,  A, and A, ay ,  Ai ,  i = 1,2. Using that 
R x k,=j = ki, equation (4.12), and after some rearrangement, the O(E) terms on the 
right-hand side of (5.4) can be written as 

sin a + ~ 2 ,  A ,  aYl A , - t ~ ,  A ,  A ,  Y, k - ( I ,  - /,I] sin (o~o) -OF))}, [ 2w 

from where it follows that, upon using the amplitude equations (4.13) and (4.14), r, RHSdz = 0. 

This in turn implies, in view of (5.1), (5.2) and (5.4), that 

l, (q)"dz  = 0 (Vy) to O(c). (5 .5)  

The following interpretation regarding the meaning of the amplitude equations is 
conceivable: to O(e), i.e. when first-order nonlinear interactions among the waves are 
taken into account, the amplitude equations assure that the total energy flux through 
an (x, z)-plane is a constant equal to zero, as required by energy conservation. 

In summary, the integral constraint (4.18) is a statement of energy conservation to 
leading order in E and the amplitude equations assure energy conservation up to O(E). 

6. Discussion and conclusions 
When the third wave excited by the wave-wave interaction between an incident and 

a reflected Rossby wave is free, a pedestrian expansion predicts a slow linear growth 
of its amplitude in the offshore direction (y) .  This would imply an infinite average 
energy over the half-space, unacceptable on physical grounds. Using the method of 



First-order resonance in the rejection of baroclinic Rossby waves 529 

multiple scales, it is shown that the straightforward expansion gives a correct 
description near the wall, but at a certain distance from it the amplitudes of the wave 
triad oscillate slowly in y ,  in a way such that the energy flux of the triad through any 
plane parallel to the wall vanishes, as required by energy conservation. This amplitude 
modulation is the envelope of a wave packet. In other words, for an incident, reflected 
and excited wave to form a resonantly interacting triad, it is necessary that they be a 
triad of wave packets. In the non-resonant case the wave amplitudes are constant in y .  

Very near the coast, the energy is present mostly in the original Rossby wave pair, 
with the forced wave having relatively very small amplitude. With increasing distance 
from the coast, the forced wave becomes increasingly important whereas the reflected 
(incident) wave has less and less energy for a western (eastern) wall until the forced 
wave amplitude reaches a maximum; then the reverse happens and so on. The 
pulsation of energy in space is perpetual with the envelopes of the wave packets 
oscillating around zero except for the longest of the three waves. 

The wave amplitudes cannot be functions of q. From the physical point of view, this 
means that the three waves do not exchange energy in time due to the additional 
constraint on the motion imposed by the boundary condition at the wall. The presence 
of the boundary inhibits energy exchange among the components of the wave triad, a 
result consistent with the statement that Rossby waves will be stabilized somewhat by 
the presence of boundaries (Gill 1974). 

Resonant interactions (recall that this can happen only if 0 < lsinal < i) are the most 
important at first order. All others, for E small, will produce an O(a) field of forced 
waves, providing a small correction to fi("). Of all forced solutions, the resonant 
response would be the largest. How could such an idea be tested? The following 
'thought ' experiment is a possibility to do the testing. Imagine a rotating wave tank 
(the surface of equilibrium of such a tank would provide the b-effect) filled with 
homogeneous fluid, having only one effectively reflecting boundary and with a Rossby 
wavemaker producing continuously a Rossby wave at one of the tank's walls. To have 
only one reflecting boundary one could devise sponge layers at the other walls, or have 
a tank of large dimensions relative to the reflecting wall, etc. The frequency w of the 
generated waves is determined by the frequency of the wavemaker ; the wavenumber 
vector of the waves is determined by the wavemaker's orientation and the radiation 
condition. For given w ,  there are at most two k values, i.e. two wave vectors, such that 
there is resonance (and for 0 < lsinal < 4, where a would be the angle between the 
reflecting boundary and the depth contours). The wavemaker could be oriented 
accordingly. The theory developed here would predict that for those orientations, one 
would observe the maximum response. 

For oceanic applications, there are some boundaries in the ocean such that 
resonance is possible. The following boundaries (outside the latitudinal belt between 
10" S and 10" N, for quasi-geostrophic dynamics to be ensured) satisfy 0 < lsinal < $ 
with the corresponding a in parentheses : (a) Atlantic Ocean : N. coast of Cuba and 
Greater Antillas (19"), coast of Venezuela (9"); (b) Indian Ocean: S .  coast of South 
Africa (173"), Great Australian Bight (167"), NW coast of Western Australia (341"); 
(c)  Pacific Ocean : Aleutian Is. (166"). 

Other authors have used a different approach to study the effect of boundaries on 
resonant interactions among Rossby waves. Plumb (1977) and Mysak (1978) took a 
triad of wave modes, allowing each wave mode amplitude to be slowly varying in time, 
which was possible since each wave mode satisfied all the boundary conditions. There 
was energy exchange between the wave modes. What would happen if three incident 
reflected Rossby wave pairs (or modes) were taken? A speculative answer follows. 
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First, there will be resonant interactions between the three pairs based on the fact that 
Plumb (1977) found resonant triads and he had the additional constraint that I was 
discretized. It is anticipated that the existence of resonant wave pair triads will depend 
on the orientation of the wall. The amplitudes of the pairs will change on a timescale 
of O(e-'), with the triad of pairs exchanging energy in such a way that energy and 
perhaps enstrophy (of the triad) are conserved. For a non-zonal wall, the self- 
interaction of each wave pair or mode will generate an x-independent flow (i.e. parallel 
to the wall) with its phase being time independent and with amplitude proportional to 
the square of the pair amplitude, thus varying slowly in time. As a result, there will be 
no steady flow parallel to the wall. 

Whether a sum of incident-reflected wave pairs would be a more suitable 
representation (in the reflection problem) of the real ocean than, say, one pair only, is 
probably so; but this is not the issue of this paper: more simple matters, i.e. the case 
of one incident-reflected wave pair, should be investigated and understood first. 

Part of this work is a portion of the author's PhD dissertation at the University of 
Hawaii. The author wants to thank Peter Muller for helpful and stimulating 
discussions and Pedro Ripa, Edgar Pavia and two anonymous referees for making 
valuable comments and suggestions. The paper was completed at CICESE and funded 
by the Secretaria de Programaci6n y Presupuesto of Mixico and by CONACYT 
under grant 0025-T9105. 

Appendix. Formulae for energetics 
If the QGPVE is multiplied by $ one can arrive at an energy equation of the form 

a , E + V , . Y  =O, (A 1) 

where E = $lV$l'+ (a, $),/S) is the total energy composed of kinetic energy plus 
available potential energy density, V, is the three-dimensional nabla operator and 

-#cosa+J"sina)$'-e$u 

is the three-dimensional total energy flux vector (defined up to an arbitrary non- 
divergent vector), in which is the unit vector in the z-direction and u = k x V$. 

For a superposition of two arbitrary Rossby waves, whose streamfunction is 

the expression for E is given by 

y n  dyn2cos 8, cos 8, , 1 E = El + E, + A ,  A ,  kl.k2 Yn, Yn2sin 8, sin 8, +-2- 
S dz dz 

(A 4) 
where, for i = 1,2, 

(lkJ2 sin' 8, + L2fi hnf cos2 8,) Pnf + - - Yn, dyni - cos28, . 
dz(S dz ) ] (A5) 

Clearly E 9 El + E,. The energy of the sum is not the sum of the energies. This fact 
is not surprising since the energy is a quadratic functional of $. 
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On the other hand, the energy flux is 

9’ = y: + % - A ,  A,(w, k ,  + W ,  k, + iE) Yn, Yn, cos 8, cos 8, 

-€:A, A ,  Yn, F n ,  R x k,{(Ik112 + LX An, + 1k21, + LX An) A ,  Yn, ( 
x [sin (28, + 0,) +sin (20, - @,)I 
+ (lk,12 + L2g A,) A, Yn2[2sin 8, +sin (8, + 28,) +sin (8, -28,)]} 

x [sin (28, + 8,) + sin (20, - O,)] 
+ R x k2{(1k11~ + LX An, + 1k-21~ + LX An) A ,  Ynn, 

+ (lk,12 + L2g A,,) A ,  YJ2 sin 8, +sin (8, + 20,)  +sin (8, - 28J) 
where 

1 ynt sin 8, cos 0, 

- E A : ( I ~ , I ~  + ~ ~ f i  A,J R x k, en, sin oi cos2 e,, i = 1,2. (A 7) 

Again, as in the case of the energy, the energy flux of the superposition is not the 
superposition of the energy fluxes : 9’ + % + SP,. 
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